Header Background Image

Publications

Key lessons from the history of science and technology: Knowns and unknowns, breakthroughs and cautions

25 March 2001

What might be the actual or potential effects on the environment, including people and communities, of utilizing GM technology and products in New Zealand? As a contribution to the debate on genetic engineering and the work of the Royal Commission on Genetic Modification, this paper looks for relevant lessons from the history of science and technology that can be applied to this emerging technology.

This paper discusses 24 examples drawn from a wide range of sciences and technologies, including: transportation, chemicals and materials, energy systems, military initiatives, medical advances, modern agriculture and ecological surprises including examples of unanticipated adverse effects of introduced species.

Among the lessons identified in the paper is the recognition that early optimism in a new advance is often followed by surprises and failures. While, in the case of engineering technologies, maturation of the technology has generally lead to safer operations, often with more circumscribed practices, biological systems are far more complex. Severe and unintended environmental outcomes may only emerge decades after initial successes. For example, some new materials and chemicals have had delayed negative impacts on human health and the environment that could not have been foreseen at the time they were introduced (e.g. asbestos, persistent organic chemicals and CFCs). These impacts have been global, systemic and complex, both in time and space, and have exposed a lack of understanding of underlying cause-and-effect relationships of scientific applications. Consequently, the paper illustrates that initial successes of a technology should not be taken as evidence of lasting benefit.

The paper also finds that there is a need to recognise the limits of science, the importance of applying the precautionary principle, and the relevance of ethical and social concerns to policy formulation and decision-making. There are a number of cases illustrated where harm has continued to be done even after negative consequences have been demonstrated. This has reduced public trust in the organisations involved and in decision-makers.

Finally, in recognition that complex problems, such as global change, require a correspondingly sophisticated approach to scientific research, the paper concludes that new models need to be, and are being, developed for linking the findings of scientific research to the policy process and to community concerns. These models will be part of more dynamic and participatory approaches to decision-making and require equal attention to scientific rigour, transparency of process and to justifying public trust as we face the challenges of new technologies and their potential applications.