
 
 

 

  
 

 

Exploring the impact of multiple 
stressors on estuarine ecosystems 
using a Bayesian Network model 

 

Prepared for Parliamentary Commissioner for the Environment 

December 2019 

 
  

  



 
 
 

© All rights reserved.  This publication may not be reproduced or copied in any form without the permission of 
the copyright owner(s).  Such permission is only to be given in accordance with the terms of the client’s 
contract with NIWA.  This copyright extends to all forms of copying and any storage of material in any kind of 
information retrieval system. 

Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is 
accurate, NIWA does not give any express or implied warranty as to the completeness of the information 
contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated 
during the Project or agreed by NIWA and the Client. 

 

 
 
Prepared by: 
Bulmer, R.H., Stephenson, F., Lohrer, A., Hewitt, J.E. 

For any information regarding this report please contact: 

Richard Bulmer 
Scientist 
Marine Ecology 
+64-7-856 1724 
richard.bulmer@niwa.co.nz 
 

National Institute of Water & Atmospheric Research Ltd 

PO Box 11115 

Hamilton 3251 

 

Phone +64 7 856 7026 

 

NIWA CLIENT REPORT No: 2019246HN 
Report date:   December 2019 
NIWA Project:   PCE19201 
 
 

Quality Assurance Statement 

 

Reviewed by: Dr Bryce Cooper 

 

Formatting checked by:  Alison Bartley 

 

 

Approved for release by: Dr Michael Bruce 

 
 
 

 



 

  

 

Contents 

Executive summary ............................................................................................................. 5 

1 Introduction .............................................................................................................. 7 

1.1 Background ............................................................................................................... 7 

1.2 Aims and objectives .................................................................................................. 8 

2 Methods .................................................................................................................... 9 

2.1 Model development ................................................................................................. 9 

2.2 Empirical Validation of the expert driven model .................................................... 12 

2.3 Scenario testing ...................................................................................................... 13 

3 Results .................................................................................................................... 16 

3.1 Conceptualizing the model outputs ........................................................................ 16 

3.2 Empirical Validation of the expert driven model .................................................... 16 

3.3 Scenarios ................................................................................................................. 17 

4 Discussion ............................................................................................................... 23 

4.1 Summary of findings ............................................................................................... 23 

4.2 Findings in relation to literature ............................................................................. 23 

4.3 Scenarios ................................................................................................................. 25 

4.4 Model caveats ......................................................................................................... 25 

4.5 Potential next steps ................................................................................................ 27 

5 Acknowledgements ................................................................................................. 28 

6 References ............................................................................................................... 29 

7 Appendices .............................................................................................................. 36 

Appendix A Full description of Bayesian network nodes and relationships ........... 37 

Appendix B Description of deriving validation score ............................................ 48 

Appendix C Information sources for the case study estuaries............................... 49 

Appendix D Model results for selected scenarios ................................................. 50 

 



 

 

 

Tables 

Table 2-1: Nodes used in the initial model and the final BN created for PCE. 10 

Table 2-2: Stressor scenarios created from the empirical data of the case study  
estuaries (see Table B-1). 13 

 
 

Figures 

Figure 2-1: Simplified example of Bayesian Network. 9 

Figure 2-2: The structure of the BN model showing conditional outcomes with  
no stress. 12 

Figure 3-1: Comparison between composite field data (green) and BN output (blue). 17 

Figure 3-2: Changes in the probability of different states occurring with increasing 
intensity of stress in a hypothetical estuary. 18 

Figure 3-3: Outputs demonstrating the response to an individual stressor  
conditional on the state of other stressors. 20 

Figure 3-4: Present state of selected ecosystem components in 4 case study  
estuaries based on empirically derived stressor states. 21 

Figure 3-5: Scenarios based on Tauranga empirically derived stressor states. 22 
 

 
 
 



 

Exploring the impact of multiple stressors on estuarine ecosystems using a Bayesian Network 5 

 

Executive summary 
New Zealand estuaries face multiple interacting stressors at a range of scales. These include elevated 

sediment and nutrient inputs, urban contaminants, and climate change. There is growing evidence of 

the influence of multiple stressors on estuarine ecosystems, including the capacity of multiple 

cumulative stressors to cause sudden and non-linear shifts, or tipping points, in ecosystem function. 

However, there remains considerable uncertainty around how multiple stressors interact, driven in 

part by a lack of data required to drive mechanistic multi stressor modelling approaches. This has 

meant that predicting and managing their impacts, particularly regarding tipping point events, has 

had limited success. There is an urgent need to develop tools which can be used by managers and 

policy makers that are credible and defensible in the face of complexity and deep uncertainty. 

Bayesian networks (BNs) offer the ability to combine empirical data with expert knowledge, bridging 

the gap between quantitative and qualitative models to allow the effects of uncertainties on 

management decisions to be explored and to overcome empirical data limitations. 

The primary focus of this study was to develop an expert derived Bayesian Network (BN) model to 

explore what is known about the impact of multiple cumulative stressors on estuarine ecosystem 

function. The BN model developed was used to explore potential changes in ecosystem function 

driven by five major estuarine stressors (suspended sediment concentrations, sediment nitrogen, 

mud and metal content and temperature effects of climate change). It was also used to assess the 

status of five selected New Zealand estuaries based on known stressor information. The trends 

generated in the model were validated against large experimental datasets.  

The model was able to: 

▪ Explore and summarise expert knowledge of estuarine ecosystems dynamics using a 

probabilistic framework which incorporated and displayed uncertainty. 

▪ Demonstrate key relationships between ecology and biogeochemical processes and 

generate threshold responses to environmental stress that were accepted by experts 

as representing current knowledge. 

▪ Demonstrate that the impact of individual stressors is conditional on the state of other 

stressors to the system, highlighting the potential limitations of single stressor 

management approaches.  

▪ Highlight some areas where increased knowledge would be useful to decrease 

uncertainty in ecosystem responses to stressors. 

▪ Suggest that for the case study estuaries investigated, many of the ecosystem 

components were sitting in the zone where poor outcomes were increasingly likely in 

response to further degradation. In other words, the resilience of the ecological 

system, its capacity to buffer against further deterioration, was likely to be limited. Of 

these estuaries, based on the available data, New River had already passed a tipping 

point and was in the worst state, whereas Tauranga appeared to be in a comparatively 

favourable state. 

Potential limitations and considerations for using the model and interpreting the results were also 

discussed, including:  
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▪ The development of the model required pragmatic decisions to minimise the number 

of nodes and relationships, determined based on expert opinion. The models’ purpose 

was to better understand the impact of multiple stressors on estuarine ecosystems in a 

general way using probability distributions to display uncertainty, not to make exact 

predictions of current or future states.  

▪ The stressor data applied to each case study estuary was determined based on 

available data from sampling sites. The number of sampling sites at many of the 

estuaries was limited, and therefore may not be reflective of the entire estuary.  

▪ We also note that while the model was designed to be able to be generally applied to a 

range of estuaries, much of the underlying knowledge comes from research from 

intertidal and shallow (<20 m) subtidal areas. Thus, the model may be less useful for 

exploring estuarine dynamics in systems with relatively large deep areas (e.g., sounds, 

fjords and outer areas of larger harbours).
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1 Introduction 

1.1 Background 

New Zealand estuaries face multiple interacting stressors at a range of scales. There is growing 

evidence of the influence of multiple stressors on estuarine ecosystems, including the capacity of 

multiple cumulative stressors to cause sudden and non-linear shifts, or tipping points, in ecosystem 

function (Thrush et al. 2014, Hewitt et al. 2016, Thrush et al. 2017). There remains considerable 

uncertainty around how multiple stressors interact, in addition to a lack of data required to drive 

mechanistic multi stressor modelling approaches, which has meant that predicting their impacts, 

particularly in regard to tipping point events, has had limited success. There is an urgent need to 

develop tools which can be used by managers and policy makers that are credible and defensible in 

the face of complexity and deep uncertainty (Gladstone-Gallagher et al. 2019).  

The complexity and uncertainty surrounding multiple stressor impacts has also contributed to a 

continued focus on the management of stressors in isolation. However, single stressor management 

has had limited capacity to address the overarching impacts of multiple stressors on estuarine 

ecosystems. Complexity and uncertainty surrounding multiple stressor impacts also results in 

ecological models being more suited to exploring the likely direction of change through developing 

systems understanding, rather than making accurate predictions about exactly what change will 

occur (Allison et al. 2018). For example, increasing model complexity may improve predictive 

capacity but may result in a loss in model interpretability (i.e., understanding how the explanatory 

variables are drivers of changes). In addition, complicated models may be less useful for large scale 

and complex problems such as those facing estuarine environments, where the data and knowledge 

to drive such predictive approaches may be incomplete. Instead, by developing models that focus on 

improving our understanding of the potential outcomes of interactions within estuarine ecosystems 

(i.e., direction of change), including the uncertainty in these relationships, management goals can be 

achieved in the absence of precise numeric predictions (Murray 2007).  

Bayesian networks (BNs) can be used as a heuristic model to demonstrate outputs of complicated 

ecosystem models, or to integrate empirical data with varying degrees of certainty or which has been 

collected for various purposes. They can also be based, in part or solely, on expert opinion (whether 

ecological, physical or Mātauranga Māori). These models have a history of use in New Zealand as 

knowledge and decision-making tools for community and industry (Quinn et al. 2013 and Hume et al. 

2008, 2009). At the same time BNs can create in-depth ecological understanding and extend theories 

(Gladstone-Gallagher et al. 2019). Their use around the world is increasing as their ability to bridge 

the gap between quantitative and qualitative models, allow the effects of uncertainties on 

management decisions to be explored and overcome empirical data limitations (Marcot et al. 2001, 

Stephenson et al. 2018, Montyniemi et al. 2013). BNs are designed to easily facilitate relationships 

and associated probability distributions to be updated when new data become available. In 

combination with other decision support tools they can play an important part of adaptive 

management processes (see (Landuyt et al. 2013) for a review of the pros and cons of BNs for 

ecosystem service modelling). 
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1.2 Aims and objectives 
The Parliamentary Commissioner for the Environment (PCE) is composing a report investigating the 
characteristics and values of estuarine coastal zones, including the ecosystem services they provide 
and their vulnerability to anthropogenic disturbance and climate change. One aspect of particular 
interest to the PCE is the impact of cumulative stressors on estuarine ecosystems.  
 
The aim of this project was to develop a BN to demonstrate how New Zealand estuarine ecosystem 
function could change in response to multiple interacting stressors under a variety of different 
management scenarios. Particular aspects of interest were benthic biodiversity, water clarity, 
primary productivity, denitrification, carbon stocks, large suspension feeding shellfish and fish.  
 
PCE also wanted to use the BN to indicate how 5 selected estuaries were being impacted by 
stressors. These selected estuaries (henceforth called case studies) were New River Estuary, a section 
of Pelorus Sound, Porirua Harbour, Whaingaroa (Raglan Harbour) and Tauranga Harbour. These case 
studies do not form a gradient of impact, nor are they especially representative of the range of New 
Zealand estuaries, with three of the five being much larger and deeper than most estuaries, which 
are predominantly small and shallow with extensive intertidal areas.  
 
While Ministry for the Environment & Stats NZ Environment Aotearoa (2019) recently identified 4 
key stressors on marine ecosystems (sediments, nutrients, fishing and climate change), many 
estuaries have considerable urbanization around them with consequent potential for metal inputs 
from stormwaters. At the same time commercial fishing is generally limited, with customary and 
recreational take expected to be the predominant source of harvesting. Within estuaries, nitrogen is 
usually more important than phosphorus as a stressor. Therefore, the stressors (drivers) chosen to 
use in the BN were those related to elevated sediment, nitrogen inputs, urban contaminants 
(metals), and climate change. 
 
Elevated sediment was decomposed into suspended sediment concentrations and mud content (see 
Table A-1 for additional details); while it would have been preferable to use sedimentation rather 
than mud content, this information was not available for the 5 case studies. Fishing was not included 
as a stressor due to the lack of information on the levels of harvesting within estuaries and 
uncertainty around potential impacts. Climate change focused on the effect of temperature as this 
was easily separable from other climate driven effects which modify the other stressors (this includes 
storms and increased precipitation and ocean acidification which in estuaries is strongly affected by 
terrestrial nutrient runoff). We note that the models’ purpose was to better understand the impact 
of multiple stressors on estuarine ecosystems in a general way using probability distributions and not 
to make accurate exact predictions of current or future states. With this in mind, the ecosystem 
components selected were the most important identified by the workshop participants rather than 
including every possible stressor/response node or relationship. 
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2 Methods 
Bayesian Networks 

BNs were created using Netica software (version 6.05, Norsys Software Corporation). A BN describes 

joint distributions (probabilities to every possible outcome over a set of variables) by exploring 

conditional independence relationships and conditional probabilities, which are represented by a 

directed acyclical graph (DAG). A variable is conditionally independent of another if the value of the 

latter doesn’t influence the value of the former. Conditional probability is the probability of one 

event occurring with some relationship to one or more other events/variables. Causal relationships 

(links) between the variables (nodes) are shown as arrows within the BN. Each node is composed of a 

conditional probability table (CPT) that defines the probability distribution of the node conditioned 

upon the values of the parent nodes (Marcot et al. 2001). Parent nodes are nodes from which arrows 

originate from, whereas child (output) nodes are those where the arrows are pointing. At the top of 

the BN are nodes with no parents; in this case they represent the stressors and their distributions are 

determined either by data or scenarios to be explored (Neuberg 2003). In the hypothetical example 

below, sedimentation and wave exposure are stressor nodes (Figure 2-1). The Light level node is a 

child node to the parent nodes Sedimentation and Wave exposure. Kelp primary production is a child 

node to all three other nodes, including Light levels.  

 

Figure 2-1: Simplified example of Bayesian Network., demonstrating unidirectional relationships between 
parent and child nodes, represented by a Directed Acyclical Graph (DAG). 

 

2.1 Model development 

Model structure and parameterisation was undertaken in iterative steps following best practice  

(Marcot et al. 2006) which are discussed in greater detail in sections 2.1.1-2.1.5. This included:  

1) Develop an initial (conceptual) model structure based on literature and expert knowledge.  
2) Define states based on literature and data.  
3)       Test this structure and define relationships with experts in a structured indirect expert 

elicitation process (Choy et al. 2009). Indirect approaches involve asking experts to predict the 
response given particular scenarios.  

4) Create conditional probability relationships based on direct expert elicitation. 
5) Refine model and relationships.  
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2.1.1 Conceptual model development 

The initial conceptual model was based on a model constructed by Prof Hewitt to assess risk of 

tipping points in ecosystem function occurring, developed under NIWA SSIF funding and an MBIE 

project (“Marine Futures”). This model was adapted as per Table 2-1. 

Table 2-1: Nodes used in the initial model and the final BN created for PCE.   1 = node added to allow BN to 
merge two effects. 

 Initial PCE BN 

Stressors Suspended sediments 
Sedimentation 
Nitrogen 
Metals 
Climate temperature 

Suspended sediments 
Mud content 
Nitrogen 
Metals 
Climate change - temperature 

Outputs Water clarity change 
Benthic biodiversity 
Microphytobenthos 
Denitrification 
Large suspension feeding shellfish 

Water clarity 
Benthic biodiversity 
primary productivity 
Denitrification 
Large suspension feeding shellfish 
Carbon stocks 
Fish (juveniles and adults). 

Other ecosystem components Large bioturbating deposit 
feeders 
Macrofauna 
Fringing vegetation 
Biogenic habitats 
Benthic nutrient and oxygen 
cycling 
Organic content 

Large bioturbating deposit 
feeders 
Macrofauna 
Fringing vegetation 
Biogenic habitats 
Benthic nutrient cycling 
Macroalgae 
Phytoplankton 
Water column algae1 

 

2.1.2 Defining states  

To minimise model complexity, while ensuring that outputs were at a sufficient resolution to make 

robust inferences about ecosystem state (Allison et al. 2018), each node in the model was given five 

potential states ranging from Very low to Very High (see Figure 2-2 and Table A-1, Table A-2 for the 

outcome probability ranges spanned by each of these categories). Continuous variables were 

discretized based on literature review (including management guidelines) and analysis of empirical 

field datasets.  

Where empirical datasets were available the state thresholds of each node were refined based on 

Non-Metric Multi-Dimensional Scaling analysis of macrofaunal community composition (using 

PRIMER V7), visually grouped by other available node states (such as mud, metals, chlorophyll). Non-

Metric Multi-Dimensional Scaling is a tool which can be used to map the distribution of data across 

gradients based on distance or dissimilarity. In addition, percentiles were used to inform states for 

ecosystem functions (such as benthic primary production, denitrification) and water quality nodes: 

e.g., Very Low <10th percentile, Low = 10th to <30th percentile, Moderate = 30th to <70th percentile, 

High = 70th to 90th percentile, Very High >90th percentile. Table A-1 and Table A-2 in Appendix A give 

full descriptions of the states and their derivations. Datasets used to inform state thresholds included 

the Tipping Points dataset and publicly available regional council monitoring data (Thrush et al. 

2003a, Hewitt et al. 2009, Pratt et al. 2014a). 
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2.1.3 Expert elicitation of model structure and relationships 

The collection of the expert elicitation was undertaken during a workshop and followed the IDEA 

protocol (“Investigate”, “Discuss”, “Estimate”, “Aggregate”). The IDEA protocol distils the most 

valuable steps from existing structured protocols and combines them into a single and practical 

protocol (Hanea et al. 2016). The key steps followed as part of this protocol were: 

1. A diverse group of experts were recruited. A workshop was held with experts from NIWA, 

University of Auckland, University of Waikato, and The Parliamentary Commissioner for the 

Environment on 19/03/19 (attended by Prof Judi Hewitt, Dr Drew Lohrer, Dr Fabrice 

Stephenson, Assoc. Prof. Carolyn Lundquist, Dr. Emily Douglas, Dr Kura Paul-Burke, Dr 

Richard Bulmer, Prof Simon Thrush, Prof Conrad Pilditch, Stefan Gray and Maria Charry). The 

researchers’ key fields of expertise were estuarine/marine ecology, ecosystem functioning, 

risk assessment and modelling.  

2. Experts first Investigated the questions and clarified their meanings. The workshop involved 

further refinement to the conceptual model structure and states, and development of the 

relationships between nodes of the model. Relationships between nodes were defined by 

each participant independently, who also provided a certainty score for each relationship 

based on how confident they were in that relationship. This included identification of key 

conditional thresholds in relationships between nodes, as experts only rarely thought that 

linear relationships existed. For example, most experts defined the relationship between 

Metals and Large suspension feeding bivalves as having a threshold between Low and 

Moderate, where the probability of having a poor outcome (Very Low or Low state) suddenly 

increased from 40% to >95%. The researchers were asked to consider relationships based on 

the present through to the near future (i.e., within the next 20 years). The model was 

designed so that it could be applied across a range of scales, from the scale of individual 

samples, to sub estuary, estuary, and multiple estuary scale. 

3. Experts received feedback on their estimates in relation to other experts. 

4. Experts Discussed the results, resolved different interpretations of the questions, cross-

examined reasoning and evidence, and provided a second and final private Estimate. 

5. The individual estimates were Aggregated. 

2.1.4 Creating conditional probability relationships 

Post workshop, an average was generated from the individual expert’s relationships, however, where 

the expert felt they were not able to accurately describe the relationship, these were omitted. While 

the strength of the relationship between parent and child nodes varied between participants, the 

direction of each of the relationships (e.g., increasing/decreasing relationship or hump-shaped curve) 

was consistent across researchers.  

The conceptual model and relationships (in terms of probabilities) were then entered into Netica to 

create the Bayesian Network. The BN model developed included 23 nodes, 102 relationships 

between nodes, and 127,275 conditional probabilities (Figure 2-2). The BN was arranged so that the 

five stressors of interest were located at the top row of the BN (suspended sediment, mud content, 

nitrogen, metals, climate change), filtering through to the ecology, then the associated ecosystem 

functions and finally back to the ecology. As relationships between nodes in a BN are unidirectional, 

the second stage ecology nodes that were of particular interest (see Introduction) were added at the 
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bottom of the model to encapsulate the feedback between species and function feedbacks (in an 

approximate manner).  

Note that in this report we use a capital letter to indicate components (Metals or Large suspension 

feeding bivalves) or states (Very Low) of the model. 

2.1.5 Expert checking of model output 

The expert driven model was then reviewed in an iterative process with participants through 

subsequent meetings, and relationships were further refined as necessary.  

 

Figure 2-2: The structure of the BN model showing conditional outcomes with no stress.    Second stage 
effects are used to understand final feedback effects on two important ecosystem components. 

2.2 Empirical Validation of the expert driven model 

Although decision making BNs are not usually validated, in this case we had some data available that 

we could use to create a validation. These data were collected as part of the Sustainable Seas 

national tipping points experiment (14 estuaries throughout the country), and the Auckland Council 

east coast monitoring program (8 estuaries throughout Auckland). Paired experimental data was not 

available for every node, however this combined dataset included a total of 372 samples, with paired 

data for some or all of the following nodes (or proxies): sediment mud, nitrogen and metal contents; 

densities of large bioturbating deposit feeders and large suspension feeding bivalves; sediment 

chlorophyll a content as a representation of microphytobenthos standing stock; photosynthetically 

active radiation on the seafloor as a representation of water clarity; benthic gross primary 

production, denitrification rates, benthic nutrient cycling, and number of taxa; and carbon stocks 

(see Table A-1 and Table A-2 further information regarding units and definitions). Suspended 

sediment concentrations were informed by the NIWA sediment load model and Dudley et al. (2017).  

Each of the 22 estuaries were classified by the available information on their driver states and these 

driver states used in the BN to generate probability distributions for each of the other nodes. 

Empirical data on the other nodes were also classified into the corresponding states for each node 

and histograms of probability distributions were generated. The probability distributions generated 
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by the BN were then compared to those generated by the pooled field data across the complete 

experimental dataset.  

Each node was given a score out of 100 corresponding to areas of overlap between the two 

probability distributions. For example, if the BN CPT for an individual node was spread between Very 

Low (50%) and Low (50%), and the field data results were spread across Very Low (55%) and Low 

(45%), the score out of 100 for this would be 95/100 (minimum Very Low of 50% + minimum Low of 

45%) (see Figure B-1 for further example of how scores were calculated across multiple states). 

2.3 Scenario testing 

A number of scenarios were used to explore the impact of multiple stressors on estuarine ecosystem 

function. The first set represented a hypothetical estuary exposed to progressively higher stressor 

levels, ranging from all Very Low states, increasing to all Low, all Moderate, all High, and all Very 

High.  

Then a set of hypothetical scenarios were run to explore whether the response to one stressor was 

conditional on the state of other stressors. All stressors and nodes were considered, although we 

demonstrate the results only for three (Mud content; Nitrogen; and Metals) and effects on two 

output variables (Second stage effects on Large suspension feeding bivalves and Juvenile and small 

fish) for the three stressors separately, in pairwise combinations and finally altogether. 

In addition, we used sample data available from the five case study estuaries, selected by PCE, to 

illustrate examples of estuaries exposed to a variable range of stressors. Data for each estuary was 

sourced from the relevant regional councils and/or publicly available datasets (Table 2-2 and Table 

C-1). For one estuary (Tauranga), we also ran two hypothetical scenarios. Tauranga was chosen as it 

contained the greatest number of samples to inform initial stressor states. One was defined based on 

the hypothetical impact of an increase of two states in metal concentrations (as observed in other 

large cities in response to land development/urbanisation), increasing the Metal state from 

predominantly Very Low to Moderate. The other was defined based on an upshift in multiple 

stressors throughout the harbour, (although not Climate change) as potentially observed as a result 

of accumulating suspended sediment, mud, metals and nitrogen through time consistent with New 

Zealand’s recent history. 

Table 2-2: Stressor scenarios created from the empirical data of the case study estuaries (see Table B-1).   
All scenarios have Moderate Climate change. Bold states represent the spread of data. 

Scenario 
Suspended 

sediment 
Mud content Nitrogen Metals 

Tauranga  Very Low = 0% 

Low = 40.4% 

Moderate = 

49.6% 

High = 10.0% 

Very High = 0% 

Very Low = 

16.7% 

Low = 40.3% 

Moderate = 

39.6% 

High = 3.5% 

Very High = 

0% 

Very Low = 57.2% 

Low = 10.7% 

Moderate = 10.7% 

High = 12.6% 

Very High = 8.8% 

Very Low = 94.6% 

Low = 5.4% 

Moderate = 0% 

High = 0% 

Very High = 0% 

Tauranga +M Very Low = 0% 

Low = 40.4% 

Very Low = 

16.7% 

Very Low = 57.2% 

Low = 10.7% 

Very Low = 0% 

Low = 0% 



 

14 Exploring the impact of multiple stressors on estuarine ecosystems using a Bayesian Network 

 

Scenario 
Suspended 

sediment 
Mud content Nitrogen Metals 

Moderate = 

49.6% 

High = 10.0% 

Very High = 0% 

Low = 40.3% 

Moderate = 

39.6% 

High = 3.5% 

Very High = 

0% 

Moderate = 10.7% 

High = 12.6% 

Very High = 8.8% 

Moderate = 

94.6% 

High =5.40% 

Very High = 0% 

Tauranga +SS, Md, 

M, N 

Very Low = 0% 

Low = 0% 

Moderate = 

40.4% 

High = 49.6% 

Very High = 10% 

Very Low = 0% 

Low = 16.7% 

Moderate = 

40.3% 

High = 39.6% 

Very High = 

3.5% 

Very Low = 0% 

Low = 57.2% 

Moderate = 10.7% 

High = 10.7% 

Very High = 21.4% 

Very Low = 0% 

Low = 94.6% 

Moderate = 5.4% 

High = 0% 

Very High = 0% 

Whaingaroa (Raglan) 

1- Waingaro arm 

Very Low = 0% 

Low = 0% 

Moderate = 0% 

High = 100% 

Very High = 0% 

Very Low = 0% 

Low = 0% 

Moderate = 

50% 

High = 50% 

Very High = 

0% 

Very Low = 50% 

Low = 0% 

Moderate = 0% 

High = 50% 

Very High = 0% 

Very Low = 0% 

Low = 100% 

Moderate = 0% 

High = 0% 

Very High = 0% 

Whaingaroa (Raglan) 

2 - Waitetuna arm 

Very Low = 0% 

Low = 0% 

Moderate = 0% 

High = 100% 

Very High = 0% 

Very Low = 0% 

Low = 0% 

Moderate = 

100% 

High = 0% 

Very High = 

0% 

Very Low = 0% 

Low = 50% 

Moderate = 50% 

High = 0% 

Very High = 0% 

Very Low = 0% 

Low = 100% 

Moderate = 0% 

High = 0% 

Very High = 0% 

Porirua 1 - Onepoto 

arm 

Very Low = 0% 

Low = 66.7% 

Moderate = 0% 

High = 33.3% 

Very High = 0% 

Very Low = 0% 

Low = 86% 

Moderate = 

0% 

High = 14% 

Very High = 

0% 

Very Low = 50% 

Low = 50% 

Moderate = 0% 

High = 0% 

Very High = 0% 

Very Low = 25% 

Low = 25% 

Moderate = 0% 

High = 50% 

Very High = 0% 

Porirua 2 -  

Pauatahanui arm 

Very Low = 0% 

Low = 33.3% 

Moderate = 

66.7% 

High = 0% 

Very High = 0% 

Very Low = 

8.3% 

Low = 50% 

Moderate = 

8.3% 

High = 33.3% 

Very High = 

0% 

Very Low = 100% 

Low = 0% 

Moderate = 0% 

High = 0% 

Very High = 0% 

Very Low = 0% 

Low = 40% 

Moderate = 60% 

High = 0% 

Very High = 0% 

Havelock, Pelorus 

Sound/Te Hoiere 

Very Low = 0% 

Low = 0% 

Very Low = 0% 

Low = 0% 

Very Low = 25% 

Low = 25% 

Very Low = 25% 

Low = 75% 
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Scenario 
Suspended 

sediment 
Mud content Nitrogen Metals 

Moderate = 0% 

High = 100% 

Very High = 0% 

Moderate = 

50% 

High = 50% 

Very High = 

0% 

Moderate = 25% 

High = 0% 

Very High = 25% 

Moderate = 0% 

High = 0% 

Very High = 0% 

New River, Southland Very Low = 0% 

Low = 0% 

Moderate = 0% 

High = 100% 

Very High = 0% 

Very Low = 

27.9% 

Low = 29.4% 

Moderate = 

25% 

High = 11.8% 

Very High = 

5.9% 

Very Low = 0% 

Low = 0% 

Moderate = 0% 

High = 100% 

Very High = 0% 

Very Low = 0% 

Low = 100% 

Moderate = 0% 

High = 0% 

Very High = 0% 
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3 Results 

3.1 Conceptualizing the model outputs 

The BN produces output nodes with probability distributions which are dependent on the initial 

stressor combinations. Even when stressors are all set to low levels, there is a small probability of a 

very low outcome for many of the output (child) nodes (Figure D-1). The model is not designed to 

accurately predict exactly when the likelihood of a low or very low outcome exceeds a critical point 

or threshold, but the combination of stressor magnitudes that makes this more likely, together with 

how certain the outcome is.  

It is important to note that the conditional probability outputs of each of the nodes of the BN reflect 

not only the uncertainty (in the mind of the experts) as to the strength of any relationships between 

the state of the parent nodes and the state of the child node, but also spatiotemporal variability in 

potential outcomes. One way to visualise the conditional probability table (CPT) outputs for each 

node of the BN is to imagine randomly selecting 10 locations throughout an estuary, sub-estuary, or 

sampling site. The CPTs of the BN reflect the range of outcomes that may be expected over those 10 

locations. 

Example 1: At the sampling site level, if a 10 m2 area is sampled that in theory has the same 

stressor states with 10 randomly placed cores to measure bivalve abundance, it is unlikely to 

result in 10 values all within the same output state. Instead the results are likely to cover a 

distribution that is skewed higher or lower based on whether stressors are towards the low or 

high end.  

Example 2: At the estuarine level, even in estuaries subject to very low stress, not all the 

estuarine area will support high ecology/function for all nodes. For example, in areas where 

mud content is increasing the effect of this will differ depending on the original sediment 

particle size. Areas with high quantities of shell hash will have higher diversity and different 

nutrient and oxygen fluxes than those with high quantities of fine sand. 

3.2 Empirical Validation of the expert driven model 

Generally, the probability distributions predicted by the BN displayed a similar shape and magnitude 
to the field data observations, with BN generated distributions typically skewed slightly towards Very 
Low or Low states. This is because: (1) model background probability distributions were generated in 
consideration of other factors that are not in the model (e.g., harvesting and benthic disturbance, 
variable spatial scale, subtidal and intertidal environments, other sediment particle size information 
and expert uncertainty), and (2) all the field data used for validation was from sites more often 
located where moderate to high macrofaunal biodiversity was known to be present. The model was 
designed to be more generally applied across intertidal/subtidal environments and throughout 
estuaries. 

Overall, agreement between the model and the field data ranged from 68/100 to 96/100 (Figure 
3-1). Validation scores were highest for Benthic gross primary productivity and Benthic nutrient 
cycling, due in part to the recent research emphasis on these two components. The three 
components with the lowest validation values were Large bioturbating deposit feeders (68/100), 
Second stage effects on Large suspension feeding bivalves (71/100) and Carbon stocks (73/100).  
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Figure 3-1: Comparison between composite field data (green) and BN output (blue).    Field data were 
sourced from the national tipping points dataset and the Auckland Council East Coast Estuaries Monitoring. 
LBDF = Large bioturbating deposit feeders, LSFB = Large suspension feeding bivalves, GPP = Benthic gross 
primary productivity. 

For Large bioturbating deposit feeders (LBDF in Figure 3-1), the expert uncertainty was generally 
high, although experts did generally agree that some form of hump-shaped curve was the most likely 
response to mud content and nitrogen. For Carbon stocks, the expert uncertainty was again generally 
high with experts often assigning near equal probabilities across the states. For Second stage Large 
suspension feeding bivalves, the ecological nodes influenced the downstream functional nodes (such 
as Benthic gross primary productivity, Denitrification, Benthic nutrient cycling, Carbon stocks, Water 
clarity), and finally to other ecological nodes contributing to increased variability in the response of 
downstream nodes to stress. 

3.3 Scenarios 

Here, we briefly summarise the BN outputs for a number of scenarios, with a primary focus on 

ecosystem components of particular interest: benthic biodiversity, water clarity, benthic gross 

primary productivity, denitrification, carbon stocks, large suspension feeding shellfish and fish 

(juveniles and small). More detailed results of the scenarios are available in the supplementary 
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material that is presented in Appendix D (including graphical outputs of the model structure and 

CPT).  

3.3.1 Increasing stress levels 

This set of scenarios investigated what happened as stressors were gradually increased from all Very 

Low through to all Very High. 

Under Very Low through to Moderate stressor scenarios, the likelihood of poor (Very Low or Low) 

outcomes for many of the ecosystem components was low (<40%, see Figure 3-2 and Table D-1). 

While changes in this likelihood occurred as stress increased from Very Low to Low to Moderate, 

there was a marked change for nearly all  ecosystem components as the stress increased from 

Moderate to High (Figure 3-2), leading to a >80% likelihood of a poor ecological outcome. The 

corollary is that chances of good (High and Very High) outcomes decreased with increasing stress 

levels (see Table D-2).  

A more linear response was evident for Biogenic habitat and Carbon stocks which exhibited little 

change with stress (Table D-1). Neither Benthic gross primary productivity nor Benthic nutrient 

cycling were strongly affected by increasing stress. Conversely, Nuisance Macroalgae and 

Phytoplankton showed a very sharp threshold occurring between Low and Moderate stress levels. 

 

Figure 3-2: Changes in the probability of different states occurring with increasing intensity of stress in a 
hypothetical estuary.   All stressors were modified with the exception of Climate change which was set to 
Moderate. Likelihood of poor outcomes are the proportion of the pie coloured red and orange. GPP = gross 
primary productivity. 
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3.3.2 Stressor responses conditional on the state of other stressors   

This set of scenarios investigated the relationship between multiple stressors by manipulating 

stressors individually over multiple different combinations of stress. The examples in Figure 3-3 focus 

on Second stage effects on Large suspension feeding bivalves (2nd LSFB) (which include important 

kaimoana species such as cockles) and Juvenile and small fish. These examples clearly demonstrate 

the threshold response of 2nd LSFB and Fish to stressor impacts, with low probability of poor 

outcomes (i.e., few to no bivalves/fish) under Very Low or Low cumulative pressures. At these levels 

of stressors, having more than one stressor makes little difference. However, once the stressors 

reach the Moderate category, this is no longer true. For 2nd LSFB metals are a strong influence with a 

stronger probability of poor outcomes when nitrogen is also moderate. This occurs despite the 

strong threshold effect of metals. For Fish, the effect of metals is not strong and a strong cumulative 

effect of the three stressors combined is apparent. As our knowledge grows in regard to multiple 

stressor impacts it will be possible to revise these relationships further, the ability to relatively easily 

update priors is a key feature of BNs. 
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Figure 3-3: Outputs demonstrating the response to an individual stressor conditional on the state of other 
stressors.  
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3.3.3 Case study estuaries 

These scenarios represent different combinations of stressors, driven by data for the five estuaries of 

interest to PCE. None of the estuaries are pristine, although Tauranga does not exhibit 

predominantly High or Very High status of any of the stressors (see Table 2-2). Given the wide range 

of stressor states for Whaingaro and Porirua, both of which had samples collected from two distinct 

arms of the harbours, the arms are treated separately below.  

New River estuary and the Waingaro arm of Whaingaroa both recorded High Nitrogen status, High 

Suspended Sediment and Low Metals. Conversely, both arms of Porirua recorded Moderate to High 

Metals and Very Low Nitrogen. All but Tauranga and the Onepoto arm of Porirua recorded High 

Suspended sediments (Table 2-2). 

Generalising across these estuaries (and more specifically the sampling sites within these estuaries), 

the model suggested a high likelihood of poor (Low or Very Low) outcomes for many of the 

ecosystem components (Figure 3-4 and Figure 3-5). 

Across the five case study estuaries, the greatest likelihood of poor outcomes was at New River 

(Figure 3-4), consistent with the higher stressor states applied to the model for this estuary. The two 

Porirua arms and Tauranga displayed the lowest likelihood of poor outcomes (Figure 3-4 and Figure 

3-5). 

 

Figure 3-4: Present state of selected ecosystem components in 4 case study estuaries based on empirically 
derived stressor states. Likelihood of poor outcomes are the proportion of the pie coloured red and orange. 
GPP = gross primary productivity. 
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Figure 3-5: Scenarios based on Tauranga empirically derived stressor states.   +M increase in metals by two 
states, +SS, Md, M, N increase all by one state. Likelihood of poor outcomes are the proportion of the pie 
coloured red and orange. GPP = gross primary productivity. 

For Tauranga, two extra scenarios were run: an increase in metal concentrations from predominantly 

Very Low to Moderate; and an upshift by one state of Suspended sediment, Mud content, Metals 

and Nitrogen. Figure 3-5 shows that the likelihood of a Very Low or Low state for 2nd LSFB for the 

baseline scenario was 44% across the estuary. Increased estuarine metal concentrations increased 

the likelihood of a poor (Very Low or Low) outcome for 2nd LSFB to 67%, and by increasing all 

stressors by one state, the likelihood increased to 70%. Visualising these outcomes spatially, this 

suggests that the spatial coverage of High or Very high densities of 2nd LSFB may reduce from 

approximately 34% of the estuary, to only 6% and 13% respectively. Equivalently dramatic effects 

were observed for 2nd stage effects on Biodiversity and Juvenile and small fish. Not surprisingly, 

increased metals had little effect on Water clarity, but also on Benthic gross primary productivity. 

Benthic nutrient cycling appeared relatively unchanged by either of the hypothetical scenarios. 
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4 Discussion 
Estuarine ecosystems incorporate a range of indirect and direct relationships including biological, 

physical, and chemical processes which have significant consequences for ecosystem function. These 

interactions can result in distinct spatial and temporal patterning throughout estuaries that can 

generate abrupt changes from one state to another (Thrush et al. 2012, Thrush et al. 2014, Hewitt et 

al. 2016, Thrush et al. 2017). This may be the result of extreme levels of stress, but may also be 

triggered by chronic and cumulative lower level impacts (Thrush et al. 2012). The primary focus of 

this study was to develop an expert derived model to explore the impact of multiple cumulative 

stressors on estuarine ecosystem function. The BN model produced was able to explore this dynamic 

using a range of scenarios informed by field data from estuaries throughout New Zealand.  

4.1 Summary of findings 

The model demonstrated key qualitative relationships between environmental stress and ecosystem 

response that satisfied experts in estuarine ecosystem functioning. This included producing 

thresholds where the likelihood of a poor ecological outcome increased dramatically and impacts of 

individual stressors which were conditional on the state of other stressors to the system. These were 

not only observed for the ecological nodes in the model, but also for many of the functional nodes 

(such as benthic primary production and nutrient cycling).  

A validation process for the model was undertaken; which is frequently not able to be done for this 

type of BN. Validation results for all the nodes were markedly higher than random, varying from 68 

to 96% concordance. Validation was highest for Benthic gross primary productivity and Benthic 

nutrient cycling, possibly due in part to the recent research emphasis on these two components. The 

three components with the lowest validation values were Large bioturbating deposit feeders, Second 

stage Large suspension feeding bivalves and Carbon stocks. For Large bioturbating deposit feeders 

and Carbon stocks, the expert certainty was generally low, suggesting that these would be useful 

areas for future research.  

The model suggests that the case study estuaries investigated are vulnerable to the impacts of 

further stress, with many of the nodes sitting in the zone where a poor (Very Low or Low) outcome 

becomes increasingly likely in response to further degradation. In other words, the resilience of the 

ecological system, its capacity to buffer against further deterioration, is likely to be limited when 

compared to estuaries with lower stressor levels. Of these estuaries, based on the available data, 

New River had already passed a tipping point and was in the worst state, whereas Tauranga 

appeared to be in a comparatively favourable state. 

4.2 Findings in relation to literature 

Many species can maintain populations across a range of stress levels, but begin to rapidly tip once 

the stressors exceed tolerance ranges (Thrush et al. 2004). Defining when this tipping point occurs is 

difficult, particularly in the context of multiple stressors, as the interactive effects of stress can have 

unexpected effects on species tolerance ranges (Breitburg et al. 1999). The probabilistic output of 

the BN illustrates this concept. For example, a very low or low ecological outcome is possible even 

under " favourable" stressor conditions. For macrofaunal components, the relationships with 

stressors were defined so that the stressors constrained the likelihood of an outcome once a certain 

level of stress was reached, and prior to this occurring the stressor had limited impact on the model. 

For example, Benthic biodiversity, Large bioturbating deposit feeders and Large suspension feeding 

bivalves have a wide tolerance range to stressors (including Suspended sediment, Mud content, 
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Nitrogen, Metals), before reducing in abundance at Moderate to Very High levels (Thrush et al. 2004, 

Hewitt et al. 2009, Green et al. 2014, Ellis et al. 2017b). Part of this response is due to differences in 

species responses within the broad node definitions. For example, pipis and horse mussels are very 

sensitive to suspended sediment, whereas cockles prefer some suspended sediment and pacific 

oysters and green mussels can remain feeding at even higher levels (Hewitt and Norkko 2007, Hewitt 

and Pilditch 2004, Hawkins et al. 1999).  

The model generated a positive relationship between Mud content (which represented 

sedimentation) and Fringing vegetation and Carbon stocks. NZ loses an estimated 192 million tonnes 

of sediment off the land via the waterways each year (Ministry for the Environment & Stats NZ 2018). 

Sediment transported to estuaries contains organic matter, a proportion of which settles out on the 

seafloor. This results in increased sediment carbon stocks and estuarine infilling (Smith et al. 2015, 

Bulmer et al. 2019). Estuarine infilling provides more available habitat for fringing vegetation such as 

mangrove to colonise (Swales et al. 2015). Fringing vegetations is also associated with high carbon 

stocks both within the sediment column and within plant biomass (Bulmer et al. 2019).  

In comparison, Biogenic habitat and Microphytobenthos were negatively impacted by High and Very 

High Suspended sediment and Nitrogen in the model. This is consistent with the reduction in subtidal 

seagrass, kelp forests and microphytobenthic activity observed around new Zealand and attributed 

to high suspended sediment/phytoplankton on benthic light availability and photosynthesis, and the 

documented effects of high suspended sediment on biogenic habitat structuring organism such as, 

such as horse mussels and sponges (Ellis et al. 2002, Lohrer et al. 2006, Chartrand et al. 2016).  

Water clarity was negatively impacted by increasing Suspended sediment and Nitrogen and 

decreasing Macrofauna and Microphytobenthos. Large suspension feeding bivalves play an 

important role filtering the water column and enhancing nutrient cycling (Vaughn and Hoellein 2018) 

which can stimulate microphytobenthic production (Lohrer et al. 2004b, Sandwell et al. 2009, Rodil 

et al. 2011, Pratt et al. 2015), while microphytobenthos can provide additional structural integrity to 

the seafloor, reducing sediment resuspension and improving water clarity (MacIntyre et al. 1996).  

Benthic gross primary productivity and Benthic nutrient cycling are positively related to 

microphytobenthic activity and macrofaunal abundance (MacIntyre et al. 1996, Lohrer et al. 2004b). 

Microphytobenthos photosynthesis to produce oxygen and consume inorganic nutrients to fuel 

photosynthetic processes (MacIntyre et al. 1996). Macrofauna excrete nutrients, as well as 

bioturbate and irrigate the sediment, and modify porewater gradients, enhancing nutrient cycling 

(Lohrer et al. 2004b). Benthic gross primary productivity was also weakly negatively affected by 

climate change, linked to increased temperatures and increased respiration/microbial activity (Pratt 

et al. 2014a, Bulmer et al. 2015).  

Denitrification rates were associated with Benthic gross primary productivity and Macrofauna. 

Increased gross primary productivity is associated with increased oxic/anoxic gradients and 

supporting coupled nitrification/denitrification processes (Gongol and Savage 2016). Benthic 

macrofauna stimulate denitrification by increasing the transport of oxygen and inorganic nutrients 

from the water to the sediment through bioturbation and bio-irrigation (Volkenborn et al. 2010) as 

well as respiring, consuming organic material and excreting inorganic nutrients (Gongol and Savage 

2016). Juvenile and small fish are positively associated with macrofaunal abundance/diversity (due to 

the provision of food (Duffy et al. 2016)), water clarity effects on predator/prey interactions) and 

biogenic habitat (provision of recruitment/nursery/shelter (Parsons et al. 2013, Parsons et al. 2014)).  
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Second stage effects on large suspension feeding bivalves and Second stage effects on Biodiversity 

were positively related to Large suspension feeding bivalves and Biodiversity, respectively, through 

positive feedbacks such as provision of recruits/structure, as well as water clarity  (tolerance to 

suspended sediment (Hewitt and Norkko 2007)), Benthic gross primary productivity (increased 

supply of oxygen for survival (Lohrer et al. 2016)), and Biogenic habitat (structure for recruitment/ 

nursery/ shelter) (Norkko et al. 2001). 

4.3 Scenarios 

To demonstrate the potential utility of the model, a range of scenarios were run to explore the 

potential outcomes. While these are limited in number, the model has been supplied in an 

executable mode that is easy to use, so that new scenarios can be explored. In this mode it can be 

used as a communication tool to understand how effects of stressors can combine and effects flow 

through the ecosystem to factors of specific interest.  

With respect to exploring its use in other specific estuaries, this will always be limited by the 

available data on the stressor’s status. However, where at least some information is available 

environmental managers may wish to explore ramifications of different stressor combinations on 

estuarine ecosystems using this type of model (the conditional probability relationships linking 

parent/stressor and child nodes remain the same for each scenario that is run). This may facilitate 

consideration of elements of estuarine ecosystem function that may otherwise have been 

overlooked, or to help to contextualize the impact of multiple stressors on estuarine function and 

summarize expert thinking without requiring independent expert elicitation. For example, this may 

be useful for visualizing the potential limitations of single stressor management, or for improving 

understanding of the links between ecology and ecosystem function and how this is impacted by 

multiple stressors.  

We demonstrated this utility using two hypothetical scenarios for Tauranga estuary. The first 

scenario was based on an increase in heavy metal concentrations, as observed in other cities such as 

Auckland associated with urban development (Hewitt et al. 2009). The second scenario was based on 

an increase in Suspended sediments, Mud content, Metals and Nitrogen, as observed at many 

estuaries throughout New Zealand over the past 20+ years (Thrush et al. 2004, Hewitt et al. 2009, 

Hewitt et al. 2016). In both scenarios, good outcomes for ecosystem components generally 

decreased, highlighting the vulnerability of the system to increasing stress. For example, the spatial 

distribution of High or Very High Large suspension feeding bivalves was estimated to reduce from 

34% of the estuary, to only 6% and 13% respectively, i.e., a contraction of approximately 1/3 or more 

of the baseline densities. While macrofaunal health reduced under both hypothetical scenarios, the 

increase in suspended sediment, mud and nutrients also resulted in a decrease in 

microphytobenthic/biogenic habitat nodes and associated functional nodes such as Benthic GPP, 

Benthic nutrient cycling and Denitrification. This was related to factors such as a reduction in benthic 

photosynthetic processes due to decreased Water clarity and increased Water column algae, 

highlighting the cascading impacts of stress on ecosystem function. 

4.4 Model caveats 

1. The model was applied to estuaries and sub-estuaries of a range of different sizes, 

shapes, bathymetry and hydrodynamics. One of the advantages of the model is that it 

can be applied at a range of spatial scales, from the scale of individual samples, to sub 

estuary, estuary, and multiple estuary scale. However, it is important to note that 
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while we discuss the BN outputs broadly for each case study estuary, the data used to 

set the stressor levels for each scenario estuary was based on limited sampling data at 

the sampling scale in specific areas, which does not necessarily represent the entire 

estuary. This data had been collected by various agencies for a variety of reasons, not 

specifically for the purpose of this model and, in the case of Tauranga, agency data had 

been supplemented by an MBIE funded Endeavour Project. In some estuaries the 

spatial distribution and number of samples was relatively high (i.e., Tauranga with 69 

intertidal and 45 subtidal sampling sites, or the mud data for New River with 65 

sampling points) whereas at others the model was informed by less than 10 sampling 

points (both arms of Raglan and Porirua, Havelock).  

2. The combination of limited data used to inform the model, as well as similarities in the 

environmental conditions at the five case study estuaries contributed to some 

similarity in model outputs across the five case study estuaries. Despite this, the model 

distinguished strongly between the New River (highest levels for most stressors) and 

Tauranga (lowest levels for most stressors).  

3. The development of the model required pragmatic decisions to minimise the number 

of nodes and relationships, determined based on expert opinion (based on best 

practice for developing BNs, (Marcot, 2017)). The models’ purpose is to better 

understand the impact of multiple stressors on estuarine ecosystems in a general way 

using probability distributions and not to make accurate exact predictions of current or 

future states. With this in mind, the ecosystem components selected were the most 

important identified by the workshop participants rather than including every possible 

stressor/response node or relationship. 

4. The levels (states) for each ecosystem response component were determined based 

on expert opinion and relevant literature, in addition to percentiles of available 

datasets. We acknowledge that the definition of node states are a potential driver of 

the results as the functional form of the probability distributions and also the 

conditional probabilities are produced based on a combined understanding of those 

levels by the experts. However, the principles applied to the model hold true 

regardless of the state categorisations (i.e., large declines in the likelihood of high 

species abundance in response to high and very high stressor levels/combinations are 

a reflection of literature). Taking the Metal node for example, if the defined 

concentration of metals was increased for each state (i.e., state definitions were all 

shifted down so that low concentrations now are defined by the older moderate 

conditions, and so on), then the drop off in species abundance would simply occur 

earlier. The key point here being that the state definitions (which include specifics on 

the associated concentrations/units) determine when the response is generated, but 

the ecological response dynamics are reflections of what is observed/expected in the 

real world.  

5. Prior to being constrained by stress, the potential outcomes were generated based on 

expert opinion in an attempt to account for the other factors that are not in the model 

(e.g., within species/group variability in response to stress, harvesting and benthic 

disturbance, species interactions, sediment characteristics other than mud content, 

subtidal and intertidal environments, as well as expert uncertainty). One result of this 

is that at Very Low and Low stressor levels, a wide range of outcomes are expected 
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(e.g., near equal probabilities of all states occurring for most nodes). This has the effect 

of diluting somewhat the changes that occur as stressors move between Very Low to 

Moderate. Having more background information on the spatial variability of ecosystem 

components within estuaries with Very Low and Low stressors levels would help 

overcome this. 

6. In order to reduce model complexity (and increase interpretability) the model was 

limited temporally to the present time (and the near future to ~2040). If the model 

was repeated with the objective to investigate historic conditions, the conditional 

probability distributions for many of the nodes, under low stress scenarios, would 

likely to be skewed further towards the High or Very high ecological outcomes. For 

example, ecological communities are likely to have changed considerably through time 

in response to historic fishing impacts. Further, limiting the model to the near future 

also limits the potential impact of climate change on sea level rise and ocean 

acidification on estuarine ecosystems, allowing us to focus on effects of temperature. 

Note that other impacts of climate change, such as changes to rainfall/storm intensity, 

were considered by the experts to be better captured by the Suspended 

sediments/Mud content/Metals/Nitrogen nodes than one climate change node.  

7. Much of the research on which this model relies has come from intertidal and shallow 

(<20m) subtidal areas due to practicalities in conducting experiments in deep subtidal 

areas. While this was taken into consideration by the experts in developing the 

relationships between nodes, it does mean that there is less certainty in applying the 

model to estuaries with relatively large areas of deep water (e.g., sounds and fjords). 

However, these types are a low proportion of the numbers of estuaries in New Zealand 

with approximately 38%  being shallow intertidally dominated estuaries (Hume 2018). 

In addition, recent work in regard to the relationship between macrofauna benthic 

health responses to metals and mud, (Clark et al. 2019) has shown that regional and 

typology differences were not a significant driver of the relationships. 

4.5 Potential next steps 

A significant advantage of BNs is that they are relatively easy to update as more information 

becomes available. They can also be used to indicate where increased understanding could be 

beneficial (see section 3.2 and 4.1). For example, climate change temperature effects are heavily 

influenced by the number of extreme temperature events and presently there is little information on 

ecological responses to these. Given the number of days of extreme temperatures in the last 

summer, it is likely that we would be able to better define our conditional probabilities for this 

stressor in the near future. 

In estuaries where additional stressors may be playing a critical role in ecosystem function (such as 

fishing), it may be worth creating additional models to better explore these relationships or refining 

the parameterisation of the model. Similarly, having more background information on the spatial 

variability of ecosystem components within estuaries with Very Low and Low stressors levels would 

be useful. 

Potential next steps may include refining the model so that stressor nodes more readily link with 

existing field datasets and environmental data layers. This may improve the capacity of the model to 

represent stressor impacts and responses within estuaries. This may mean modifying stressor nodes 
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where spatial data are either not readily available or difficult to translate into ecologically relevant 

relationships (for example, suspended sediment). Moving forward, applying the BN spatially may 

improve the value of the model, such as enabling identification of likely hotspots of ecosystem 

function and biodiversity within estuaries, along with areas of high resilience, vulnerability and 

degradation. 

There are two areas for use of BNs that were not explored with this model. Firstly, BNs can be used 

to understand changes to values (e.g., if the relationship between mud content and walkability is 

known, effects on access could be incorporated). Further, the relative ease in which expert 

knowledge can be incorporated into BNs suggests their potential utility in generating Mātauranga 

based models of estuarine ecosystem dynamics (for example models informed by iwi oral histories). 

It may be possible to pair any such models to the current model to expand the combined scope of 

both approaches.  
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Appendix A Full description of Bayesian network nodes and relationships 

Table A-1: Full description of stressor nodes, state ranges and the data used to create the states.  

Node Unit and definition State Expert opinion informed by: 

Sediment 
mud content 
(Mud 
content) 

% Mud (silt and clay) 
 
% by dry weight of surface 
(generally top 2 cm) 
sediment particles in a 
sample <63 µm in 
diameter. 
 

• Very Low: <5 

• Low: 5 to 20 

• Moderate: 21 to 50 

• High: 51 to 90 

• Very High: >90 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Hewitt et al. 2009, Thrush et al. 2012, Rodil et al. 
2013). 

Suspended 
sediment 

Mean mg L-1Total 
suspended solids (TSS)  
 
TSS is the dry-weight of all 
suspended particulate 
matter in a water sample 
(usually assessed by 
filtering the sample through 
a pre-weighed 0.8 or 1.2 
µm pore size filter). 

• Very Low: <5  

• Low: 5 to <20  

• Moderate: 20 to <40  

• High: 40 to 70  

• Very High: >70  

Total suspended solid data from a nationwide 
summary of water quality data across New Zealand 
(Dudley et al. 2017) and field studies , or inferred from 
modelled estuarine sediment loads (retrieved from the 
NIWA sediment load model) (Hicks et al. 2019). 
  

Nitrogen 
inputs to 
estuary 
(Nitrogen) 

Total Nitrogen mg m-3 yr-1 
 
Predicted specific nitrogen 
load within water column 
of an estuary. 
 

• Very Low: <40 

• Low: 40 to <80  

• Moderate: 80 to <200  

• High: 200 to 320  

• Very High: >320  

Estimates were derived from the GIS software CLUES-
estuary (Zeldis et al. 2011), which predicts annual 
specific nutrient loads to estuaries. The estuary 
component consists of either of two flushing/mixing 
models a two-layer box model for deep or strongly 
stratified estuaries, and a modified tidal prism model 
used for most tidally dominated estuaries, such as the 
New River Estuary. The flushing/mixing models provide 
a time-averaged, volume-averaged prediction of total 
nitrogen (TN). Potential nutrient concentrations are 
the concentrations that would occur if there were no 
biological uptake or denitrification. Potential nutrient 
concentrations provide an indication of the loading 
applied to the estuary, and may be more useful than 
actual (measured) concentrations, which are 
influenced by denitrification and biological uptake. A 
high algae biomass, as expected in eutrophic 
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Node Unit and definition State Expert opinion informed by: 

conditions, may take up much of the available 
nutrients, resulting in low measured concentrations 
relative to the applied loading. Potential nutrient 
concentrations are expected to be higher than actual 
concentrations. 
 

Metal 
concentration
s (Metal) 

PC1.5 
 
Weighted concentrations of 
the metals Zinc, Copper, 
Lead within surface 
sediments (generally to 10 
cm depth). 

• Very Low: <-0.164 

• Low: -0.164 to -0.0667  

• Moderate: -0.0667 to <0.0234  

• High: 0.0234 to 0.1  

• Very High: >0.1 
 

Data used to inform expert opinion obtained from 
principal component analysis (PCA) of publicly 
available monitoring datasets (Hewitt et al. 2009, Rodil 
et al. 2013), which include metal concentrations in 
surface sediments and are related to Auckland Council 
guidelines which are increasingly used throughout the 
country. Values are calculated using the equation 
below, where X is metal concentration in mg/kg. The 
PCA 1st axis explained 94% of the variability in log 
Copper (Cu.500), Zinc (Zn.500), and Lead (Pb.500). 
PC1.5 = 
 

Climate 
change  

Predicted change in air 
temperature (°C) through 
time. 

• Very low: Mean temperature 
increase by +0.5°C; 20% 
decrease in frosts; 20% 
increase in extreme hot days 

• Low: Mean temperature 
increase by +0.7°C; 30% 
decrease in frosts; 40% 
increase in extreme hot days 

• Moderate: Mean temperature 
increase by +0.85°C, 40% 
decrease in frosts; 70% 
increase in extreme hot days 

• High: Mean temperature 
increase by +1°C; 50% 
decrease in frosts; 100% 
increase in extreme hot days 

• Very High: Mean temperature 
increase by +1.1°C; 60% 
decrease in frosts; 120% 
increase in extreme hot days 

 

Scenarios based on IPCC 5th Assessment report and 
simulations run on NIWA’s super computer (MfE 
2018). 
Predictions as follows:  

• Mean air temperature by 2040, from +0.7°C 
[RCP2.6] to +1.0°C [RCP8.5]. 

• Minimum and maximum air temperatures, 
maximum increases faster than minimum. 
Diurnal range increases by up to 2°C by 2090 
(RCP8.5). 

• Daily temperature extremes - frosts by 2040, 
a 30% [2.6] to 50% [8.5] decrease. 

• Daily temperature extremes hot day by 
2040, a 40% [2.6] to 100% [8.5] increase. 

• Daily precipitation extremes dry days by 
2090 [8.5], up to 10 or more dry days per 
year (~5% increase). 

• Daily precipitation extremes very wet days. 
More than 20% increase in 99th percentile of 
daily rainfall by 2090 [8.5] in South West of 

)(586.0)(528.0)(615.0 )500()500()500(

PbZnCu XXX ++
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South Island. A few percentage decrease in 
north and east of North Island. 

• Extreme wind speeds Up to 10% or more in 
parts of the country. 

Note, mean precipitation is predicted to vary around 
the country and with season. Therefore, the climate 
change node is based primarily on predicted changes in 
temperature. To capture differences in precipitation 
throughout the country for individual estuaries it is 
instead possible to modify the suspended sediment and 
nutrient load nodes, which are positively related to 
rainfall. This node does not include other potential 
climate change impacts such as changes to water 
column temperature, pH, wave disturbance, elevated 
erosion, sea level rise etc. 
The model timeframe was considered now until the 
near future (ie to 2040) to constrain the uncertainties 
around climate change. Based on this timeline, in the 
experts view sea level rise and acidification were not a 
major consideration. Similarly, the experts viewed 
climate change induced changes to storm 
intensity/frequency to be a relatively minor stressor in 
the context. 

 

Table A-2: Full description of ecosystem component nodes, state ranges, the data used to create the states and the relationships with other nodes.  

Node Unit and definition State Expert opinion informed by: Relationships 

Large 
bioturbating 
deposit 
feeders 

Number of individuals per 
13 cm diameter core 
(generally 15 cm depth). 
 
Large deposit feeders 
bioturbate the sediment, 
transporting organic 
material and changing 
oxygen gradients 
throughout the sediment 
column, influencing carbon 

• Very Low: Not present 

• Low: ≤1  

• Moderate:1 to <2  

• High:2 to 3 

• Very High: >3 
 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Thrush et al. 2003a, Hewitt et al. 2009, Pratt et al. 
2014a). 
 
 

Suspended sediment –Negative from 
Moderate to Very High (Thrush et al. 
2004) 
 
Mud content – Positive from Very low 
to Low, Negative from Moderate to 
Very High (Thrush et al. 2003b, Ellis et 
al. 2017b) 
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and nutrient cycling 
processes. 
 
Examples include 
Macamona liliana (wedge 
shell), Austrohelice crassa 
(mud crab), Hemiplax 
hirtipes (mud crab), Owenia 
petersenae (tube worm), 
Platynereis australis (nereid 
polychaete worm) 

Metals - Negative from Moderate to 
Very High (Hewitt et al. 2009, Ellis et al. 
2017b) 
 
Water column algae –Negative (Green 
et al. 2014) 

Large 
suspension 
feeding 
bivalves 
 
 

Number of individuals per 
13 cm diameter core. 
 
Act as key species in 
estuarine ecosystems by 
filtering the water column, 
influencing seafloor/water 
column carbon and 
nitrogen cycling, and 
providing an important 
food source for higher 
trophic levels, including 
humans. 
 
Large suspension feeding 
bivalves  
Examples Austrovenus 
stutchburyi (cockles), 
Paphies australis (pipi), 
Pectinidae (scallops), Atrina 
zealandica (horse mussel), 
Perna canaliculus (green 
shell mussel). 

• Very Low: <1  

• Low: 1 to <10  

• Moderate: 10 to <20  

• High:20 to 40  

• Very High: >40  
 
 
 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Thrush et al. 2003a, Hewitt et al. 2009, Pratt et al. 
2014a). 
 
 

Suspended sediment –Negative from 
Moderate to Very High (Ellis et al. 
2002, Lohrer et al. 2006) 

 
Mud content – Negative from 
Moderate to Very High (Thrush et al. 
2003b, Ellis et al. 2017b) 
 
Metals - Negative from Moderate to 
Very High (Hewitt et al. 2009, Ellis et al. 
2017b) 
 
Large bioturbating deposit feeders - 
Negative from Moderate to Very High 
(Lohrer et al. 2013) 
 
Water column algae – Positive from 
Very Low to Moderate, Negative from 
Moderate to Very High (Green et al. 
2014) 

Benthic 
biodiversity 

Number of species per 
13cm diameter core. 

• Very Low: <10  

• Low: 10 to <15  

• Moderate: 15 to <20  

• High: 20 to 25  

• Very High: >25  

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Thrush et al. 2003a, Hewitt et al. 2009, Pratt et al. 
2014a). 
 

Suspended sediment – Increasingly 
negative from Moderate to Very High 
(Thrush et al. 2004) 
 
Mud content – Negative from 
Moderate to Very High (Thrush et al. 
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2003b, Lohrer et al. 2004a, Ellis et al. 
2017b) 
 
Metals - Increasingly negative from 
Moderate to Very High (Hewitt et al. 
2009, Ellis et al. 2017b) 
 
Water column algae – Negative (Green 
et al. 2014) 
 

 

Macrofauna Intermediate node which 
combines large 
bioturbating deposit 
feeders, Large Suspension 
Feeding Bivalves, and 
Benthic Biodiversity nodes 
via a simple weighted sum. 

Intermediate node Intermediate node used to reduce the number of 
parent nodes (and their complexity of relationships) 
feeding into child nodes throughout the model. 

Large bioturbating deposit feeders – 
Positive 
 
Large suspension feeding bivalves – 
Positive 
 
Benthic biodiversity - Positive 

Microphytob-
enthos 

Chlorophyll a (µg g-1 
sediment) 
 
Microphytobenthos 
consists of unicellular 
eukaryotic algae and 
cyanobacteria that grow 
within the upper several 
millimeters of sediments. 
Chlorophyll a is a pigment 
that can be measured by 
standard methods as a 
proxy for 
microphytobenthos 
abundance. 
 

• Very Low: <5  

• Low: 5 to <12  

• Moderate:12 to <20  

• High: 20 to 30  

• Very High: >30  
 

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data 
(Thrush et al. 2012). 
 

Suspended sediment –Negative (Rodil 
et al. 2011, Pratt et al. 2014b) 
 
Mud content – Positive (Pratt et al. 
2015) 
 
Nitrogen – Positive (Sandwell et al. 
2009) 
 
Water column algae – Negative (Corzo 
et al. 2009, García-Robledo and Corzo 
2011, Pratt et al. 2014b) 
 
Macrofauna – Positive (Lohrer et al. 
2004b, Sandwell et al. 2009, Rodil et al. 
2011, Pratt et al. 2015) 

Phytoplankt-
on  

Chlorophyll a (mg l-1 water) 
 
Phytoplankton are 
microscopic algae within 
the water column. 
Chlorophyll a is a pigment 

• Very Low:<0.001  

• Low 0.001 to <0.0015  

• Moderate: 0.0015 to <0.0028  

• High: 0.0028 to 0.0042 chl a  

• Very High: >0.0042 chl a 

Water column chlorophyll a concentrations from a 
nationwide summary of water quality data across New 
Zealand (Dudley et al. 2017). 

Suspended sediment –Negative  
(Christine et al. 2003) 
 
Nitrogen – Positive (Anderson et al. 
2002) 
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that can be measured by 
standard methods as a 
proxy for phytoplankton 
abundance. 
 

Note, units updated post workshop 
to align with Dudley et al.2017 
dataset 

Nuisance 
Macroalgae  

Algal cover (%) and wet 
weight (g) per area (m2) 
 
Nuisance Macroalgae (e.g., 
Ulva sp/sea lettuce and 
Gracilaria spp /red algae in 
soft-sediment areas).  
 

• Very Low: Algal cover <2.5% 
and low biomass (<25 g/m2 
wet weight) of opportunistic 
macroalgal blooms. 

• Low: Algal cover 2.5-<5% and 
low biomass (25 to <50 g/m2 
wet weight) of opportunistic 
macroalgal blooms. 

• Moderate: Limited macroalgal 
cover (5– 20%) and low 
biomass (50 to <200 g/m2 wet 
weight) of opportunistic 
macroalgal blooms. 

• High: Persistent, high % 
macroalgal cover (25–50%) 
and/or biomass (200 to 1000 
g/m2 wet weight), often with 
entrainment in sediment. 

• Very High: Persistent very high 
% macroalgal cover (>75%) 
and/or biomass (>1000 g/m2 
wet weight), with entrainment 
in sediment. 

Informed by outputs from a modified version of the 
estuary trophic index tool (Plew et al. 2019). 

Suspended sediment –Negative  
(Coutinho and Zingmark 1993) 
 
Nitrogen – Positive (Coutinho and 
Zingmark 1993, Anderson et al. 2002) 
 

Water column 
algae 

Intermediate node which 
combines Phytoplankton 
and Nuisance Macroalgae 
nodes. 

Intermediate node Used to reduce the number of parent nodes feeding 
into child nodes throughout the model. 

Macroalgae – Positive 
 
Phytoplankton - Positive 

Fringing 
vegetation 

Cover (% of estuary) of 
vegetation such as 
mangroves and saltmarsh, 
found in the upper 
intertidal areas of estuaries 

• Very Low: Little to no fringing 
vegetation present. 

• Low: Low coverage of fringing 
vegetation. No recent changes 
in the extent of fringing 
vegetation. 

Informed primarily based on mangrove data as 
comparably little data exists on saltmarsh (Morrisey et 
al. 2010). 

Suspended sediment –Positive  
(Lovelock et al. 2010) 
 
Nitrogen – Positive (Lovelock et al. 
2007) 
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• Moderate: Moderate cover of 
fringing vegetation. Little 
evidence of expansion into 
other intertidal habitats  

• High: High cover of fringing 
vegetation. Moderate loss of 
other intertidal habitats due 
to estuarine 
infilling/expansion of fringing 
vegetation. 

• Very High: Very high cover of 
fringing vegetation. Significant 
reduction in other intertidal 
habitats due to estuarine 
infilling/expansion of fringing 
vegetation. 

Biogenic 
habitat 

Coverage (%) and 
composition of biogenic 
habitat 
 
Biogenic habitats are 
defined as those created by 
living plants (e.g., kelp 
forests, seagrass meadows, 
mangrove forests) or 
animals (e.g., bryozoan 
thickets, sponge garden, 
tubeworm fields) where 
their three-dimension 
structure provides shelter, 
protection and resources 
for other marine flora and 
fauna. 

• Very Low: Little to no biogenic 
habitat present. 

• Low: Low coverage of biogenic 
habitat, dominated by more 
stress tolerant habitats such 
as intertidal seagrass and 
tubeworm mounds. 

• Moderate: Moderate cover of 
biogenic habitat, including 
small areas of kelp forests or 
shellfish beds. 

• High: High cover of diverse 
biogenic habitats. 

• Very High: Very high cover of 
biogenic habitats including 
very high coverage of subtidal 
seagrass, kelp and shellfish 
beds. 

Informed by a national review of biogenic habitat in 
New Zealand (Anderson et al. 2019).  

Suspended sediment –Negative  (Ellis et 
al. 2002, Lohrer et al. 2006, Bulmer et 
al. 2018) 
 
Nitrogen – Positive (Desmond et al. 
2015, Lohrer et al. 2016) 
 
Large suspension feeding bivalves – 
Positive (Anderson et al. 2019) 
 

Juvenile and 
small fish 

Abundance of fish • Very Low: No fish present 

• Low: Low abundance of fish 
present. Unlikely to be 
observed in the area. 

Informed by a national review of habitats and areas of 
particular significance for coastal finfish fisheries 
(Morrison et al. 2014). 

Macrofauna – Positive (Duffy et al. 
2016) 
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• Moderate: Moderate 
abundance of fish present. 

• High: High abundance of fish 
present. Very High: Very High 
abundance of fish present. 

Biogenic habitat – Positive (Parsons et 
al. 2013, Morrison et al. 2014, Parsons 
et al. 2014) 
 
Water clarity – Positive (Parsons et al. 
2013) 
 

Water clarity Maximum depth (m) to 
which a black and white 
(secchi) disk can be seen 
through the water with the 
naked eye . 
 
Water clarity is a measure 
of visual penetration 
through the water column. 
There are many alternative 
ways to assess clarity or its 
opposite (turbidity). 

• Very low: Able to routinely see 
<0.5 m through water column 
(e.g., Near exit to Thames 
river) 

• Low: Able to see routinely 0.5 
to <0.8 m through water 
column 

• Moderate: Able to routinely 
see 0.8 to <1.3 m through 
water column 

• High: Able to routinely see 1.3 
to 2.5 m through water 
column  

• Very High: Able to routinely 
see >2.5 m through water 
column (e.g., Parengarenga) 

Informed by secchi depth measurements from a 
nationwide summary of water quality data across New 
Zealand (Dudley et al. 2017). 

Suspended sediment –Negative  (Devlin 
et al. 2008) 
 
Phytoplankton – Negative (Devlin et al. 
2008) 
 
Microphytobenthos – Positive 
(MacIntyre et al. 1996) 
 
Large suspension feeding bivalves – 
Positive (Hewitt and Norkko 2007) 
 

Carbon 
stocks/ 
storage  

% organic material in 
surface sediments 
 
Sediment organic matter 
content (measured as the 
percent by weight of 
combustible organic 
material in the sediment) is 
a proxy for the amount of 
organic carbon-based 
matter present in the 
sediment. 

• Very Low: <1%  

• Low: 1 to <2%  

• Moderate: 2 to <3%  

• High: 3 to 4%  

• Very High: >4%  

Informed by field datasets, including the Tipping Points 
dataset and publicly available regional council 
monitoring data (Thrush et al. 2003a, Hewitt et al. 
2009, Pratt et al. 2014a). 
 

Mud content – Positive (Lohrer et al. 
2011) 
 
Biogenic habitat – Positive (Bulmer and 
Lundquist 2016) 
 
Fringing vegetation – Positive (Bulmer 
and Lundquist 2016, Bulmer et al. 
2019) 

Benthic Gross 
Primary 
Production 
(GPP) 

µmol O2 m-2 hr-1 
 
Benthic GPP is the gross 
production of oxygen by 

• Very Low: Strongly net 
heterotrophic (benthic oxygen 
consumption >235 µmol m-2 
hr-1 more than oxygen 

States determined based on expert opinion and field 
data, such as the Tipping Points dataset and other 
benthic chamber experiments (Pratt et al. 2014a). 
 

Microphytobenthos – Positive (Lohrer 
et al. 2011, Drylie et al. 2018) 
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 photosynthetically active 
microphytobenthic 
communities.  
 
Calculated in the field using 
benthic chambers, based 
on the difference in O2 flux 
from chambers exposed to 
sunlight (where 
photosynthesis can occur) 
and dark (where only 
respiration occurs).  
 

produced). Potential for 
hypoxia/anoxia, shallow redox 
depth, etc. 

• Low: Weakly autotrophic 
(benthic oxygen production -
235 to 650 µmol m-2 hr-1 more 
than oxygen consumed. 

• Moderate: Moderately 
autotrophic (benthic oxygen 
production 650 to 1900 µmol 
m-2 hr-1 more than oxygen 
consumed. 

• High: Highly autotrophic 
(benthic oxygen production 
>1900 to 3000 µmol m-2 hr-1 

more than oxygen produced. 

• Very High: Very highly 
autotrophic (benthic oxygen 
production >3000 µmol m-2 hr-

1 more than oxygen 
consumed. 

 
 

Climate change – Negative (Pratt et al. 
2014a, Bulmer et al. 2015) 
 
Biogenic habitat – Positive (Drylie et al. 
2018) 

Denitrification  µmol N2 m-2 hr-1  
 
Denitrification is a 
microbially facilitated 
process where nitrate is 
reduced and ultimately 
produces molecular 
nitrogen through a series of 
intermediate gaseous 
nitrogen oxide products. 
Denitrification is considered 
the dominant pathway for 
the removal of nitrogen 
from shallow coastal and 
estuarine systems. 
 

• Very Low: Little to no net 
efflux of N2 gas out of the 
sediment (≤0 umol N2 µmol m-

2 hr-1) 

• Low: Low net efflux of N2 gas 
out of the sediments (0-<37 
umol N2 µmol m-2 hr-1) 

• Moderate: Moderate net 
efflux of N2 gas out of the 
sediments (37-<100 umol N2 

µmol m-2 hr-1) 

• High: High net efflux of N2 gas 
out of the sediments (100-200 
umol N2 µmol m-2 hr-1) 

• Very High: Very high net efflux 
of N2 gas out of the sediments 
(>200 umol N2 µmol m-2 hr-1) 

States determined based on expert opinion and field 
data, such as the Tipping Points dataset (Peterson 
2018). 

 

Benthic GPP – Positive (Gongol and 
Savage 2016) 
 
Macrofauna – Positive (Lohrer et al. 
2004b, Gongol and Savage 2016) 
 
Suspended sediment – Negative 
 
Mud content – Positive (Gongol and 
Savage 2016, Douglas 2018) 
 
Nitrogen – Positive (Nowicki 1994, 
Gongol and Savage 2016) 
 
Climate change – Positive (Nowicki 
1994) 
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Benthic 
nutrient 
cycling  

µmol NH4
+ m-2 hr-1 

 
Sediment nutrient cycling is 
defined as the rate of 
photosynthetic uptake of 
NH4

+ by microphytobenthic 
activity (i.e., how much 
ammonia released from the 
sediment is being 
intercepted and cycled by 
microphytobenthos rather 
than released to the water 
column). Calculated using 
field data from benthic 
chamber experiments, 
based on the difference in 
NH4

+ flux from chambers 
exposed to the dark (where 
only respiration occurs) and 
chambers exposed to the 
light (where photosynthesis 
can occur).  
 

• Very Low: Little to no 
photosynthetic uptake of NH4

+ 
by microphytobenthic activity 
(<0 NH4

+ µmol m-2 hr-1).  

• Low: Low photosynthetic 
uptake of NH4

+ by 
microphytobenthic activity (0 
to <10 NH4

+ µmol m-2 hr-1).  

• Moderate: Moderate 
photosynthetic uptake of NH4

+ 
by microphytobenthic activity 
(10 to <50 NH4

+ µmol m-2 hr-1). 

• High: High photosynthetic 
uptake of NH4

+ by 
microphytobenthic activity (50 
to <180 NH4

+ µmol m-2 hr-1). 

• Very High: Very high 
photosynthetic uptake of NH4

+ 
by microphytobenthic activity 
(>180 NH4

+ µmol m-2 hr-1). 

States determined based on expert opinion and field 
data, such as the Tipping Points dataset and other 
benthic chamber experiments (Pratt et al. 2014a). 
 

Microphytobenthos – Positive 
(MacIntyre et al. 1996) 
 
Macrofauna – Positive (Lohrer et al. 
2011, Thrush et al. 2017) 
 
Climate change – Positive (Bulmer et 
al. 2017) 

Second stage 
effects on 
Large 
suspension 
feeding 
bivalves 

Number of individuals per 
13 cm diameter core 
 
Act as key species in 
estuarine ecosystems 
filtering the water column, 
influence seafloor/water 
column carbon and 
nitrogen cycling, and 
provide an important food 
source for higher trophic 
levels, including humans. 
 
Large suspension feeding 
bivalves  
Examples Austrovenus 
stutchburyi (cockles), 

• Very Low: <1  

• Low: 1 to ≤10  

• Moderate: 10 to 20  

• High:20 to 40 

• Very High: >40  

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data. 
 
Bayesian Networks do not allow direct feedbacks 
between two nodes, relationships are required to be 
uni directional. By including 2nd stage ecology nodes, 
we are able to somewhat get around this limitation. 
This allows us to explore the impact of ecology on 
functional nodes (such as benthic gross primary 
production), and then the impact of functional nodes 
on ecology. 

Large suspension feeding bivalves – 
Positive 
 
Water clarity – Positive (Hewitt and 
Norkko 2007) 
 
Biogenic habitat – Positive (Norkko et 
al. 2001) 
 
Benthic GPP – Positive (Lohrer et al. 
2016) 
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Paphies australis (pipi), 
Pectinidae (scallops), Atrina 
zealandica (horse mussel), 
Perna canaliculus (green 
shell mussel) 

Second stage 
effects on 
Biodiversity 

Number of species per 
13cm diameter core 

• Very Low: <10  

• Low: 10 to <15  

• Moderate: 15 to <20  

• High: 20 to <25  

• Very High: >25  

Field data, such as the Tipping Points dataset and 
publicly available regional council monitoring data. 
 
Bayesian Networks do not allow direct feedbacks 
between two nodes, relationships are required to be 
uni directional. By including 2nd stage ecology nodes, 
we are able to somewhat get around this limitation. 
This allows us to explore the impact of ecology on 
functional nodes (such as benthic gross primary 
production), and then the impact of functional nodes 
on ecology. 

Benthic biodiversity – Positive 
 
Water clarity – Positive (Hewitt and 
Norkko 2007) 
 
Benthic GPP – Positive (Lohrer et al. 
2016) 
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Appendix B Description of deriving validation score 
 

 
 
 

Figure B-1: Demonstration of how the BN model output was compared to field data.   LBDF= Large 
bioturbating deposit feeders. 68/100 = sum of the areas of overlap. 
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Appendix C Information sources for the case study estuaries 

Table C-1: Information available from the 5 case study estuaries.  

 Informed by 

Tauranga 1 Bay of Plenty Regional Council sediment data- 69 intertidal 

and 45 subtidal sites including paired sediment mud, 

nitrogen, and metal concentrations (Ellis et al. 2017a, Clark 

et al. 2018, Lawton and Conroy 2019). Suspended sediment 

inferred from 

https://statisticsnz.shinyapps.io/coastal_water_quality/ 

Whaingaroa (Raglan) 1 Waingaro arm Environment Waikato REMP sediment data – 2 intertidal 

sites with paired sediment mud, nitrogen, and metal 

concentrations (3 reps per site). Suspended sediment 

inferred from 

https://statisticsnz.shinyapps.io/coastal_water_quality/ 

Whaingaroa (Raglan) 2 Waitetuna arm Environment Waikato REMP sediment data – 2 intertidal 

sites with paired sediment mud, nitrogen, and metal 

concentrations (3 reps at each site). Suspended sediment 

inferred from 

https://statisticsnz.shinyapps.io/coastal_water_quality/ 

Porirua 1 Onepoto arm Greater Wellington Regional Council sediment data – 3 

intertidal and 4 subtidal sites with sediment mud data, 

paired nitrogen (2 sites) and metal concentration (4 sites) 

data (Robertson and Stevens 2015). Suspended sediment 

inferred from 

https://statisticsnz.shinyapps.io/coastal_water_quality/ 

Porirua 2 Pauatahanui arm Greater Wellington Regional Council sediment data – 7 

intertidal and 5 subtidal sites with sediment mud data, 

paired nitrogen (2 sites) and metal concentration (5 sites) 

data (Robertson and Stevens 2015). Suspended sediment 

inferred from 

https://statisticsnz.shinyapps.io/coastal_water_quality/ 

Havelock, Pelorus Sound/Te Hoiere Marlborough District Council sediment mud data from 6 

intertidal sites, paired nitrogen (4 sites), and metal 

concentration (4 sites) data. Suspended sediment inferred 

from Robertson (2019) 

New River, Southland Environment Southland sediment mud data from 68 sites. 

Remaining stressor information inferred from Robertson et 

al. (2017) and the NIWA sediment load and CLUES models. 
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Appendix D Model results for selected scenarios  

Table D-1: The likelihood of scenarios resulting in Very Low or Low outcomes for each ecosystem component.   The first five represent hypothetical estuaries 
exposed to progressively higher stressor impacts. The other scenarios are based on sample data available from five case study estuaries. Green = <40% likelihood of a 
Very Low or Low state, White = 40-80% likelihood of a Very Low or Low state, Red = >80% likelihood of a Very Low or Low state. 

 

VL L M H VH Tauranga  
Tauranga 

(+M)  

Tauranga  
(+SS, Md, 

M, N) 

Whaingaroa 
1 

Whaingaroa 
2 

Porirua 1 Porirua 2 
Te 

Hoiere- 
Havelock 

New River 

Large bioturbating 
deposit feeders 36 39 34 95 100 50 62 69 67 67 65 56 74 83 

Benthic biodiversity 18 27 33 98 100 48 58 74 72 63 53 49 78 90 

Fringing vegetation 30 26 18 16 16 24 24 20 20 20 26 27 21 16 

Large suspension 
feeding bivalves 28 28 32 97 100 45 72 74 87 87 66 60 89 87 

Macrofauna 11 29 34 98 100 48 63 59 75 69 59 54 80 89 

Microphytobenthos 33 56 24 83 98 51 51 64 62 64 49 46 71 82 

Biogenic habitat 16 25 40 61 86 39 41 57 59 59 38 38 63 60 

Water clarity 28 7 21 90 100 27 26 57 70 70 25 6 72 86 

Benthic gross primary 
production 26 34 23 58 65 37 37 45 43 44 35 34 48 54 

Denitrification 52 53 57 87 91 60 68 74 76 73 67 65 78 78 

Benthic nutrient cycling 21 31 27 71 77 39 47 55 53 51 44 41 59 67 

Carbon stocks 43 43 36 33 32 41 41 37 35 37 42 41 36 40 

Second stage effects on 
Large suspension 
feeding bivalves 23 25 31 95 100 43 67 71 83 84 62 55 86 85 

Second stage effects on 
Biodiversity 13 21 31 97 100 44 53 70 68 59 48 44 75 89 

Juvenile and small fish 28 33 41 95 99 50 63 71 73 68 59 48 77 85 

Nuisance Macroalgae* 100 100 27 0 1 73 73 59 59 59 100 100 54 0 

Phytoplankton* 100 100 11 0 1 70 70 58 59 59 100 100 54 0 

Water column algae* 100 100 17 0 1 71 71 58 58 58 100 100 54 0 

*Relationships inverse to other nodes - Very Low and Low states were considered to be ecologically favourable   
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Table D-2: The likelihood of scenarios resulting in Very High or High outcomes for each ecosystem component.   The first five represent hypothetical estuaries 
exposed to progressively higher stressor impacts. The other scenarios are based on sample data available from five case study estuaries. Green = >30% likelihood of a 
High or Very High state, White = 10-30% likelihood of a High or Very High state, Red = <10% likelihood of a High or Very High state. 

 VL L M H VH Tauranga  
Tauranga 

(+M)  

Tauranga  
(+SS, Md, 

M, N) 

Whaingaroa 
1 

Whaingaroa 
2 

Porirua 1 Porirua 2 
Te 

Hoiere- 
Havelock 

New River 

Large bioturbating 
deposit feeders 36 33 31 1 0 25 13 14 13 13 16 19 11 6 

Benthic biodiversity 58 44 40 0 0 28 25 12 9 12 27 31 8 1 

Fringing vegetation 28 32 37 46 62 35 35 20 44 44 35 32 44 46 

Large suspension 
feeding bivalves 43 47 42 0 0 32 1 12 0 0 17 13 0 5 

Macrofauna 64 43 39 0 0 28 19 13 8 10 24 26 7 4 

Microphytobenthos 45 30 24 5 1 27 26 16 16 13 30 32 13 5 

Biogenic habitat 61 40 19 13 5 25 23 12 9 9 28 23 8 14 

Water clarity 64 63 29 0 0 41 38 15 6 6 48 50 4 2 

Benthic gross primary 
production 46 33 52 13 2 34 34 25 28 26 36 38 22 14 

Denitrification 33 32 27 8 6 26 20 17 15 17 21 23 14 13 

Benthic nutrient cycling 31 47 48 18 17 40 33 27 26 28 37 39 23 18 

Carbon stocks 36 36 39 46 49 36 36 41 42 38 36 38 42 38 

Second stage effects on 
Large suspension 
feeding bivalves 53 50 44 0 0 34 5 13 2 2 20 17 1 6 

Second stage effects on 
Biodiversity 63 47 45 0 0 31 27 14 12 15 30 34 10 2 

Juvenile and small fish 52 47 43 2 0 34 24 18 15 17 27 37 12 7 

Nuisance Macroalgae* 0 0 4 99 99 18 18 32 0 0 0 0 25 99 

Phytoplankton* 0 0 11 99 99 23 23 32 0 0 0 0 25 99 

Water column algae* 0 0 19 99 99 21 21 34 6 6 0 0 28 99 

*Relationships inverse to other nodes - Very Low and Low states were considered to be ecologically favourable   
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Figure D-1: BN model for all stressors set to Very Low.  
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Figure D-2: BN model for all stressors set to Low.  
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Figure D-3: BN model for all stressors set to Moderate.  
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Figure D-4: BN model for all stressors set to High.  
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Figure D-5: BN model for all stressors set to Very High.  
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Figure D-6: BN model for Tauranga.  
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Figure D-7: BN model for Tauranga (upshift metals by two states).  
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Figure D-8: BN model for Tauranga (upshift suspended sediment, mud, nitrogen, metals by one state).  
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Figure D-9: BN model for Whaingaroa (Raglan) Waingaro arm.  



 

Exploring the impact of multiple stressors on estuarine ecosystems using a Bayesian Network 61 

 

 

Figure D-10: BN model for Whaingaroa (Raglan) Waitetuna arm.  
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Figure D-11: BN model for Porirua (Onepoto arm).  
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Figure D-12: BN model for Porirua (Pauatahanui arm).  
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Figure D-13: BN model for Havelock, Pelorus Sound/Te Hoiere.  
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Figure D-14: BN model for New River.  

 


